Preparation and physicochemical analysis of Co3O4/SnO2/TiO2 hybrid ternary systems with enhanced photocatalytic activity under solar light irradiation

sivakumar S santhanam, muthamilarasu A A, sivakumar m murugesan, sakthi D sakthi, vadivel P vadivel


Various combinations of TiO2 and SnO2 in binary composites of SnO2/TiO2 and (2-10 wt. %) Co3O4 on SnO2/TiO2 of ternary composite Co3O4/SnO2/TiO2 with were prepared. All the photocatalysts shows anatase crystalline phase and some of appropriate peaks of SnO2 and Co3O4 peaks also present in binary and ternary systems, which is confirmed by X-Ray diffraction analysis. UV-Vis DRS indicated that all ternary composite Co3O4/SnO2/TiO2 showed strong response in visible region and pure materials shows representative band positions. The molecular structure of M-O linkages (Ti-O, Co-O and Sn-O) is studied by FTIR analyses. Other physicochemical techniques such as SEM and PL also confirm the surface property and electronic excitation state. Ternary composite Co3O4/SnO2/TiO2 demonstrates the highest decomposition for simultaneous degradation of reactive orange 30 (RO 30) under solar light.


Ternary composite; Co3O4/SnO2/TiO2; TiO2; Solar light degradation; reactive orange 30

Full Text:



Chen X Chen R, Zhu X, Liao Q, Zhang Y, Ye D, Zhang B, Yu Y, Li J, J. Catal. 2019; 372, 182–192.

Girish Kumar S, Gomathi Devi L J Phys Chem A 2011; 115, 13211–41

Debopriya B, Debopriyo GD, Mondal B, Kumar P, Navonil B,, Sukhen D and Mousumi B, Results in Physics 2019; 12, 1850–1858

Lee WJ, Park MH, Wang Y, Lee JY, Cho J. Nanoscale. Chem. Commun. 2010; 46, 622–4.

Uchiyama H, Nagao R, Kozuka H. J. Alloys Compd. 2013; 554, 122–6.

Han Y, Wu X, Ma Y, Gong L, Qu F, Fan H. Cryst. Eng. Comm. 2011;13, 3506–10

Tao J, Zhang M, Gao X, Zhao H, Ren Z, D. Li, J. Li, R. Zhang, Y. Liu, Y. Zhai, Mater. Chem. Phys. 2020; 240, 122185.

Zhao X, Lu Z, Ji R, Zhang M, Yi C, Yan Y, Catal. Commun. 2018; 112, 49–52.

Khan A, Liao Z, Liu Y, Jawad A, Ifthikar J, Chen Z, J. Hazard. Mater. 2017; 329, 262–271.

Shi X, Quan S, Yang L, Shi G, Shi F, Chemosphere 2019; 219, 914–922.

Nguyen TH, Doan VT, Nguyen MK, Pham TT, Tran TMH, Nguyen HTV, Nguyen VN, Dinh Trinh T, Thanh DP, Nguyen TTT, Nguyen LMT, Ceramics International 2020; 46, 21610–21616

Sivakumar M, Sivakumar S, Ravishankar M and Krishnan E, J. Adv. Appl. Sci. Res. 2020; 2-6, 1-11

Xiao Q, Zhang J, Xiao C, Tan X, Catal. Commun. 2008; 9 1247–1253

Vadivel S, Dharmaraja J, Sivakumar S and Elavarasan A, Res. J. Chem. Environ, 2021; 25 (1) 89-96

Tao L, Jian-Dong C, Mei-Ling X, Rui L, Li-Min G, Pei-Lin Z, Hai-Quan X and Kui L Cryst. Eng. Comm. 2013; 00, 1-3, 1-9

Al-Ghouti M.A., Khraisheh M.A. and Allen S.J., J. Environ. Manage. 2003; 69(3), 229-238

Chen C, Liu QW, Gao S, Li K, Xu H, Lou ZZ, Huang BB, Dai Y, 2014, RSC Adv 4, pp.12098.

Tang X, Hu KA, Mater.J. Sci.2006, Vol. 41, pp.8025.

Sivakumar S, Selvaraj A, and Ramasamy AK, Photochem. Photobiol. 201389: 1047-1056.

Ramakrishna D, Bhagavanth RG., B. Rajkumar, D.Ayodhya, G.Veerabhadram, Acta Metall. Sin. (Engl. Lett.), 2016 29(1) 17


  • There are currently no refbacks.

Copyright (c) 2021 sivakumar S santhanam, muthamilarasu A A, sivakumar m murugesan, sakthi D sakthi, vadivel P vadivel

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.